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1. Introduction

The relation between the massive gauge-boson masses, MW and MZ , in terms of the Fermi

constant, Gµ, and the fine structure constant, α, is of central importance for testing the

electroweak theory. It is usually employed for predicting MW in the model under con-

sideration. This prediction can then be compared with the corresponding experimental

value. The current experimental accuracy for MW , obtained at LEP and the Tevatron, is

δMW = 30 MeV (0.04%) [1, 2]. This experimental resolution provides a high sensitivity to

quantum effects involving the whole structure of a given model. The MW –MZ interdepen-

dence is therefore an important tool for discriminating between the Standard Model (SM)
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and any extension or alternative of it, and for deriving indirect constraints on unknown

parameters such as the masses of the SM Higgs boson or supersymmetric particles, see

ref. [3] for a recent review. Within the SM the confrontation of the theory prediction and

experimental result for the W boson mass supplemented by the other precision observ-

ables yields an indirect constraint on the Higgs-boson mass, MH , of MH = 89+42
−30 GeV

with MH < 175 GeV at the 95% C.L. [2]. Within the Minimal Supersymmetric Standard

Model (MSSM) [4] the electroweak precision observables exhibit a certain preference for a

relatively low scale of supersymmetric particles, see e.g. refs. [5, 6].

The experimental precision on MW will further improve within the next years. The

Tevatron data will reduce the experimental error to about δMW = 20 MeV [7], while at

the LHC an accuracy of about δMW = 15 MeV [8] is expected. At the GigaZ option of a

linear e+e− collider, a precision of δMW = 7 MeV can be achieved [9, 10].

A precise theoretical prediction for MW in terms of the model parameters is of utmost

importance for present and future electroweak precision tests. Within the SM, the com-

plete one-loop [11] and two-loop [12 – 16] results are known as well as leading higher-order

contributions [17 – 21].

The theoretical evaluation of MW within the MSSM is not as advanced as in the

SM. So far, the one-loop contributions have been evaluated completely [22 – 26], restricting

however to the special case of vanishing complex phases (contributions to the ρ parameter

with non-vanishing complex phases in the scalar top and bottom mass matrices have been

considered in ref. [27]). At the two-loop level, the leading O(ααs) corrections [28, 29]

and, most recently, the leading electroweak corrections of O(α2
t ), O(αtαb), O(α2

b)to ∆ρ

have been obtained [30, 31]. Going beyond the minimal SUSY model and allowing for

non-minimal flavor violation the leading one-loop contributions are known [32].

In order to fully exploit the experimental precision for testing supersymmetry (SUSY)

and deriving constraints on the supersymmetric parameters,1 it is desirable to have a

prediction of MW in the MSSM at the same level of accuracy as in the SM. As a step into

this direction, we perform in this paper a complete one-loop calculation of all contributions

to MW in the MSSM with complex parameters (cMSSM), taking into account for the first

time the full phase dependence and imposing no restrictions on the various soft SUSY-

breaking parameters. We combine this result with the full set of higher-order contributions

in the SM and with all available corrections in the MSSM. In this way we obtain the

currently most complete result for MW in the MSSM. A public computer code based on

our result for MW is in preparation.

We analyse the numerical results for MW for various scenarios in the unconstrained

MSSM and for SPS benchmark scenarios [34]. The dependence of the result on the complex

phases of the soft SUSY-breaking parameters is investigated. We estimate the remaining

theoretical uncertainties from unknown higher-order corrections.

The outline of the paper is as follows. In section 2 the basic relations needed for the

prediction of MW are given and our conventions and notations for the different SUSY sec-

1A precise prediction for MW in the MSSM is also needed as a part of the “SPA Convention and Project”,

see ref. [33].
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tors are defined. In section 3 the complete one-loop result MW including the full phase

dependence of the complex MSSM parameters is obtained. The incorporation of all avail-

able higher-order corrections in the SM and the MSSM is described. The numerical analysis

is presented in section 4, where we also estimate the remaining theoretical uncertainties in

the prediction for MW . We conclude with section 5.

2. Prediction for MW – basic entries

Muons decay to almost 100% into eνµν̄e [35]. Historically, this decay process was first de-

scribed within Fermi’s effective theory. The muon decay rate is related to Fermi’s constant,

Gµ, by the defining equation

Γµ =
G2

µm5
µ

192π3
F (

m2
e

m2
µ

)

(

1 +
3

5

m2
µ

M2
W

)

(1 + ∆QED), (2.1)

with F (x) = 1 − 8x − 12x2 ln x + 8x3 − x4. By convention, the QED corrections in the

effective theory, ∆QED, are included in eq. (2.1) as well as the (numerically insignificant)

term 3m2
µ/(5M2

W ) arising from the tree-level W propagator. The precise measurement of

the muon lifetime and the equivalently precise calculation of ∆QED [36, 37] thus provide

the accurate value

Gµ = (1.16637 ± 0.00001 × 10−5) GeV−2. (2.2)

In the SM and in the MSSM, Gµ is determined as a function of the basic model parameters.

The corresponding relation can be written as follows,

Gµ√
2

=
e2

8
(

1 − M2
W

M2
Z

)

M2
W

(1 + ∆r). (2.3)

The quantity ∆r summarizes the non-QED quantum corrections, since QED quantum

effects are already included in the definition of Gµ according to eq. (2.1), which makes

the evaluation of ∆r insensitive to infrared divergences. ∆r depends on all the model

parameters, which enter through the virtual states of all particles in loop diagrams,

∆r = ∆r(MW ,MZ ,mt, α, αs, . . . ,X) (2.4)

with

X = MHSM (SM),

X = Mh,MH ,MA,MH± , tan β,Mf̃ , Af ,mχ̃0,± , . . . (MSSM),

and is hence a model-specific quantity. For each specification of the parameter set X, the

basic relation (2.3) is fulfilled only by one value of MW . This value can be considered

the model-specific prediction of the W mass, MW (X), providing a sensitive precision ob-

servable, with different results in the SM and in the MSSM. Comparing the prediction of

MW with the experimental measurement leads to stringent tests of these models. Within
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the SM one can put bounds on the Higgs boson mass, which has so far not been directly

measured experimentally. In the MSSM, ∆r and MW are sensitive to all the free parame-

ters of the model, such as SUSY particle masses, mixing angles and couplings. The SUSY

entries are briefly described below, thereby introducing also conventions and notations for

the subsequent discussion.

Sfermions. The mass matrix for the two sfermions of a given flavour, in the f̃L, f̃R basis,

is given by

Mf̃ =

(

M2
L + m2

f mf X∗
f

mf Xf M2
R + m2

f

)

, (2.5)

with

M2
L = M2

F̃
+ M2

Z cos 2β (If
3 − Qfs2

w)

M2
R = M2

F̃ ′ + M2
Z cos 2β Qfs2

w (2.6)

Xf = Af − µ∗{cot β , tan β},

where {cot β , tan β} applies for up- and down-type sfermions, respectively, and s2
w ≡

sin2 θW = 1 − M2
W /M2

Z . In the Higgs and scalar fermion sector of the cMSSM, Nf + 1

phases are present, one for each Af and one for µ, i.e. Nf + 1 new parameters appear. As

an abbreviation,

φAf
≡ arg(Af ) , (2.7)

will be used. As an independent parameter one can trade φAf
for φXf

≡ arg(Xf ). The

sfermion mass eigenstates are obtained by the transformation

(

f̃1

f̃2

)

= Uf̃

(

f̃L

f̃R

)

, (2.8)

with a unitary matrix Uf̃ . The mass eigenvalues are given by

m2
f̃1,2

= m2
f +

1

2

[

M2
L + M2

R ∓
√

(M2
L − M2

R)2 + 4m2
f |Xf |2

]

, (2.9)

and are independent of the phase of Xf .

Higgs bosons. Contrary to the SM, in the MSSM two Higgs doublets are required.

At the tree level, the Higgs sector can be described with the help of two independent

parameters, usually chosen as the ratio of the two vacuum expectation values, tan β ≡
v2/v1, and MA, the mass of the CP-odd A boson. Diagonalisation of the bilinear part of

the Higgs potential, i.e. the Higgs mass matrices, is performed via rotations by angles α

for the CP-even part and β for the CP-odd and the charged part. The angle α is thereby

determined through

tan 2α = tan 2β
M2

A + M2
Z

M2
A − M2

Z

; −π

2
< α < 0 . (2.10)
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One obtains five physical states, the neutral CP-even Higgs bosons h,H, the CP-odd Higgs

boson A, and the charged Higgs bosons H±. Furthermore there are three unphysical

Goldstone boson states, G0, G±. At lowest order, the Higgs boson masses can be expressed

in terms of MZ ,MW , and MA,

M2
h,H =

1

2

[

M2
A + M2

Z ∓
√

(M2
A + M2

Z)2 − 4M2
AM2

Z cos2 2β

]

,

M2
H± = M2

A + M2
W . (2.11)

Higher-order corrections, especially to Mh, however, are in general quite large. Therefore

we use the results for the Higgs boson masses as obtained from the code FeynHiggs2.2 [38 –

40]; also the angle α is replaced by the effective mixing angle αeff in the improved Born

approximation [41, 42].

Charginos and neutralinos. The physical masses of the charginos are determined by

the matrix

X =

(

M2

√
2 sin β MW√

2 cos β MW µ

)

, (2.12)

which contains the soft breaking term M2 and the Higgsino mass term µ, both of which

may have complex values in the cMSSM. Their complex phases are denoted by

φM2 ≡ arg (M2) and φµ ≡ arg (µ) . (2.13)

The physical masses are denoted as mχ̃±

1,2
and are obtained by applying the diagonalisation

matrices Uχ̃± and Vχ̃± ,

U∗
χ̃±XV

†

χ̃± =

(

mχ̃±

1
0

0 mχ̃±

2

)

. (2.14)

The situation is similar for the neutralino masses, which can be calculated from the

mass matrix (sw = sin θw, cw = cos θw)

Y =











M1 0 −MZ sw cos β MZ sw sin β

0 M2 MZ cw cos β MZ cw sin β

−MZ sw cos β MZ cw cos β 0 −µ

MZ sw sin β MZ cw sin β −µ 0











. (2.15)

This symmetric matrix contains the additional complex soft-breaking parameter M1, where

the complex phase of M1 is given by

φM1 ≡ arg (M1) . (2.16)

The physical masses are denoted as mχ̃0
1,2,3,4

and are obtained in a diagonalisation

procedure using the matrix Nχ̃0.

N∗
χ̃0YN

†

χ̃0 =











mχ̃0
1

0 0 0

0 mχ̃0
2

0 0

0 0 mχ̃0
3

0

0 0 0 mχ̃0
4











. (2.17)

– 5 –



J
H
E
P
0
8
(
2
0
0
6
)
0
5
2

At the two-loop level also the gluino enters the calculation of MW . In our calculation below

we will incorporate the full phase dependence of the complex parameters at the one-loop

level, while we neglect the explicit dependence on the complex phases beyond the one-loop

order. Accordingly, we take the soft SUSY-breaking parameter associated with the gluino

mass, M3 ≡ mg̃, which enters only at two-loop order, to be real.

3. Calculation of ∆r

Our aim is to obtain a maximally precise and general prediction for MW in the MSSM.

So far the one-loop result has been known only for the case of real SUSY parameters

[24, 25]. In this section, we evaluate the complete one-loop result in the cMSSM with

general, complex parameters and describe the incorporation of higher-order terms.

3.1 Complete one-loop result in the complex MSSM

Evaluation of the full one-loop results requires renormalisation of the tree-level Lagrangian.

This introduces a set of one-loop counter terms, which contribute to the muon decay

amplitude, in addition to the genuine one-loop graphs. At one-loop order, ∆r can be

expressed in terms of the W boson self-energy, vertex corrections (“vertex”), box diagrams

(“box”), and counterterms for charge, mass, and field renormalisation as follows,

∆r(α) =
ΣWW

T (0)

M2
W

− δM2
W

M2
W

+ 2
δe

e
− c2

w

s2
w

(

δM2
Z

M2
Z

− δM2
W

M2
W

)

+
1

2
δZe

L +
1

2
δZνe

L +
1

2
δZµ

L +
1

2
δZ

νµ

L + (vertex) + (box), (3.1)

where ΣT (q2) denotes the transverse part of a vector boson self-energy. The leading con-

tributions to ∆r(α) arise from the renormalisation of the electric charge and the weak

mixing angle (the last two terms in the first line of eq. (3.1)). The former receives large

fermionic contributions from the shift in the fine structure constant due to light fermions,

∆α ∝ log(mf/MZ), a pure SM contribution. The latter involves the leading universal

corrections induced by the mass splitting between fields in an isospin doublet [43],

∆ρ =
ΣZZ

T (0)

M2
Z

− ΣWW
T (0)

M2
W

. (3.2)

In the SM ∆ρ reduces to the well-known quadratic term in the top-quark mass if the

masses of the light fermions are neglected. In the MSSM ∆ρ receives additional sfermion

contributions, in particular from the squarks of the third generation. The one-loop result

for ∆r expressed in terms of ∆α and ∆ρ reads

∆r(α) = ∆α − c2
w

s2
w

∆ρ + ∆r(α)
rem, (3.3)

where ∆r
(α)
rem summarizes the remainder terms in eq. (3.1).

Throughout our calculation the on-shell renormalisation scheme is applied. In this

scheme renormalisation conditions are imposed such that the particle masses are the poles

– 6 –
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(1)

V1

V2

f2

f1

Figure 1: Generic lepton and quark one-loop diagram contributing to ∆r via gauge-boson self-

energies; V1, V2 = γ, Z, W±, f1, f2 = ν, l, u, d.

of the propagators and the fields are renormalised by requiring unity residues of the poles.

These conditions ensure that the MW –MZ interdependence given by eq. (2.3) is a relation

between the physical masses of the two gauge bosons. Applying the renormalisation condi-

tions, the counterterms in eq. (3.1) can be expressed in terms of self-energies, and eq. (3.1)

turns into

∆r(α) =
ΣWW

T (0)

M2
W

+ (vertex) + (box) − ReΣWW
T (M2

W )

M2
W

+
[∂Σγγ

T (k2)

∂k2

]

k2=0
− sw

cw

ΣγZ
T (0)

M2
Z

− c2
w

s2
w

Re

[

ΣZZ
T (M2

Z)

M2
Z

− ΣWW
T (M2

W )

M2
W

]

−Σe
L(0) − Σµ

L(0) − Σνe
L (0) − Σ

νµ

L (0) , (3.4)

where ΣL(q2) denotes the left-handed part of a fermion self-energy. The electron and muon

masses are neglected in the fermion field renormalisation constants, which is possible since

the only mass-singular virtual photon contribution is already contained in ∆QED of eq. (2.1)

and is not part of ∆r.

At the one-loop level one can divide the diagrams contributing to ∆r into four classes:

(i) SM-like contributions of quark and lepton loops in the gauge-boson self-energies,

schematically depicted in figure 1;

(ii) SUSY contributions of squark and slepton loops in the gauge-boson self-energies,

depicted in figure 2;

(iii) contributions from the Higgs and gauge boson sector, which contain besides self-

energies (figsures 3 and 4) also vertex and box graphs (figure 5).

(iv) SUSY contributions involving neutralinos and charginos in self-energies, vertex graphs

and box diagrams, see figsures 6 and 7.

The calculation of the one-loop diagrams was performed in the dimensional regulari-

sation [44] as well as the dimensional reduction scheme [45]. The analytical result for ∆r

turned out to be independent of the choice of scheme.

Technically, the calculation was done with support of the Mathematica packages

FeynArts [46, 47], OneCalc [48], and FormCalc [49]. A peculiarity among the box diagrams

– 7 –
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(1)

V1 V2

f̃

(2)

V1

V2

f̃2

f̃1

Figure 2: Generic squark and slepton one-loop diagrams which contribute to ∆r via gauge-boson

self-energies; f̃ , f̃1, f̃2 = ν̃, l̃, ũ, d̃.

(1)

V1 V2

V3

(2)

V1

V2

V4

V3

(3)

l, ν

l, ν

l, ν

V

Figure 3: Generic gauge-boson contributions to one-loop gauge-boson and fermion self-energies

entering ∆r (the same diagrams as in the SM). The labels l and ν in the fermion self-energy diagram

stand for electron, muon and the corresponding neutrinos.

(1)

V1 V2

s

(2)

V1

V2

s2

s1

(3)

V1

V2

V3

s

Figure 4: Generic contributions of MSSM Higgs bosons and Goldstone bosons to one-loop gauge-

boson self-energies; s, s1, s2 = h, H, A, H±, G0, G±.

is the graph with a virtual photon, see diagram (4) in figure 5. Since QED corrections are

accounted for in the Fermi model definition of Gµ, according to eq. (2.1), the correspond-

ing diagram with a point-like W -propagator 1/M2
W has to be subtracted. This is the same

– 8 –
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(1)

l

ν

W

Z

l

ν

(2)

l

ν

W

l, ν

V1

V2

(3)

µ

νµ

e

νe

νµ, µ

W,Z

Z,W

νe, e

(4)

µ

νµ

e

νe

µ

γ

W

e

Figure 5: Generic gauge-boson contributions to one-loop vertex and box diagrams entering ∆r

(the same diagrams as in the SM). The labels l and ν in the vertex diagrams stand for electron,

muon and the corresponding neutrinos.

(1)

V1

V2

χ̃0, χ̃±

χ̃0, χ̃±

(2)

l, ν

l, ν

χ̃0, χ̃±

l̃, ν̃

Figure 6: Generic neutralino/chargino contributions to gauge-boson (1) and fermion (2) self-energy

diagrams. The labels l, ν in the fermion self-energy diagram stand for electron, muon and their

corresponding neutrinos, and the labels l̃, ν̃ indicate their respective superpartners.

(1)

l

ν

W

ν̃, l̃

χ̃±, χ̃0

χ̃0, χ̃±

(2)

l

ν

W

χ̃0

l̃

ν̃

(3)

µ

e

νe

νµ

χ̃, χ̃0

ν̃µ, µ̃

ν̃e, ẽ

χ̃0, χ̃

(4)

µ

e

νe

νµ

χ̃0, χ̃

µ̃, ν̃µ

ν̃e, ẽ

χ̃, χ̃0

Figure 7: Generic neutralino and chargino contributions to one-loop vertex and box diagrams

entering ∆r. The labels l, ν stand for electron, muon and their corresponding neutrinos, and the

labels l̃, ν̃ indicate their respective superpartners.

procedure as in the SM and leaves an IR-finite expression for ∆r (see ref. [11] for the orig-

inal analysis, a detailed discussion of this point can be found in refs. [12, 13]). After this

subtraction, all external momenta and all lepton masses can be neglected in the vertex and

box diagrams, so that this set of Feynman diagrams reduces to one-loop vacuum integrals.

In order to obtain the relevant contributions to ∆r, the Born-level amplitude needs

to be factored out. This is straightforward for the SM vertex and box graphs and also for

the SUSY vertex corrections. Concerning the box contributions, diagrams like graph (3)

of figure 5 directly yield a Born-like structure (after simplifying the Dirac chain using, for

– 9 –
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instance, the Chisholm identity, γµγνγρ = −iεµνρσγσγ5 + gµνγρ − gµργν + gνργµ), i.e.

MBorn-like box = MBorn · ∆rbox. (3.5)

Here

MBorn = (ūνµγρ ω−uµ)(ūeγρ ω−vνe) ·
2πα

s2
wM2

W

(3.6)

is the tree-level matrix element in the limit where the momentum exchange is neglected.

Box graphs involving supersymmetric particles, on the other hand, yield a different spinor

structure. The SUSY box graphs shown in figure 7, diagrams (3) and (4), can schematically

be written as

MSUSY box1 = (ūeγ
ρ ω−uµ)(ūνµγρ ω−vνe) · b

(α)
1 , (3.7)

MSUSY box2 = (ūνeω−uµ)(ūνµω+ve) · b(α)
2 , (3.8)

where eq. (3.7) corresponds to diagram (3) and eq. (3.8) to diagram (4). The SUSY box

contributions to ∆r can be extracted by applying the Fierz identities

(ūeγ
ρ ω−uµ)(ūνµγρ ω−vνe) = −(ūνµγρ ω−uµ)(ūeγρ ω−vνe) (3.9)

(ūνeω−uµ)(ūνµω+ve) =
1

2
(ūνeγ

ρ ω+ve)(ūνµγρ ω−uµ) , (3.10)

where eq. (3.10) can be further manipulated using charge conjugation transformations.

This yields

∆rSUSY box1 = −s2
wM2

W

2πα
b
(α)
1 , ∆rSUSY box2 =

s2
wM2

W

4πα
b
(α)
2 . (3.11)

3.2 Incorporation of higher-order contributions

In order to make a reliable prediction for MW in the MSSM, the incorporation of con-

tributions beyond one-loop order is indispensable. We now combine the one-loop result

described in the previous section with all known SM and MSSM higher-order contributions.

In this way we obtain the currently most accurate prediction for MW in the MSSM.

3.2.1 Combining SM and MSSM contributions

As mentioned before, the theoretical evaluation of MW (or ∆r) in the SM is significantly

more advanced than in the MSSM. In order to obtain a most accurate prediction for MW

(via ∆r) within the MSSM it is therefore useful to take all known SM corrections into

account. This can be done by writing the MSSM prediction for ∆r as

∆rMSSM = ∆rSM + ∆rMSSM−SM , (3.12)

where ∆rSM is the prediction in the SM and ∆rMSSM−SM is the difference between the

MSSM and the SM prediction.

In order to obtain ∆rMSSM according to eq. (3.12) we evaluate ∆rMSSM−SM at the level

of precision of the known MSSM corrections, while for ∆rSM we use the currently most

advanced result in the SM including all known higher-order corrections. As a consequence,
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∆rSM takes into account higher-order contributions which are only known for SM particles

in the loop but not for their superpartners (e.g. two-loop electroweak corrections beyond

the leading Yukawa contributions and three-loop corrections of O(αα2
s)).

It is obvious that the incorporation of all known SM contributions according to eq. (3.12)

is advantageous in the decoupling limit, where all superpartners are heavy and the Higgs

sector becomes SM-like. In this case the second term in eq. (3.12) goes to zero, so that the

MSSM result approaches the SM result with MHSM = Mh, where Mh denotes the mass of

the lightest CP-even Higgs boson in the MSSM. For lower values of the scale of supersym-

metry the contribution from supersymmetric particles in the loop can be of comparable

size as the known SM corrections. In view of the experimental bounds on the masses of the

supersymmetric particles (and the fact that supersymmetry has to be broken), however, a

complete cancellation between the SM and supersymmetric contributions is not expected.

Therefore it seems appropriate to apply eq. (3.12) also in this case (see also the discussion

in ref. [30]).

3.2.2 SM contributions

As mentioned above, within the SM the complete two-loop result has been obtained for

MW [12 – 16]. Besides the one-loop part of ∆r [11] it consists of the fermionic electroweak

two-loop contributions [12], the purely bosonic two-loop contributions [13] and the QCD

corrections of O(ααs) [14, 15]. Higher-order QCD corrections are known at O(αα2
s) [17, 18].

Leading electroweak contributions of order O(G2
µαsm

4
t ) and O(G3

µm6
t ) that enter via the

quantity ∆ρ have been calculated in ref. [20]. Furthermore, purely fermionic three- and

four-loop contributions were obtained in ref. [50], but turned out to be numerically very

small due to accidental cancellations. The class of four-loop contributions obtained in

ref. [51] give rise to a numerically negligible effect.

All numerically relevant contributions were combined in ref. [16], and a compact ex-

pression for the total SM result for MW was presented. This compact expression approx-

imates the full SM-result for MW to better than 0.5 MeV for Higgs masses ranging from

10 GeV ≤ MH ≤ 1 TeV, with the other parameters (mt, ∆α5
had(MZ), αs(MZ), MZ) varied

within 2σ around their central experimental values. The contributions entering the result

given in ref. [16] can be written as

∆rSM = ∆r(α) + ∆r(ααs) + ∆r
(α2)
ferm + ∆r

(α2)
bos + ∆r(αα2

s) + ∆r(G2
µαsm4

t ) + ∆r(G3
µm6

t ), (3.13)

where we have suppressed the index “SM” on the right-hand side.

3.2.3 MSSM two-loop contributions

The leading SUSY QCD corrections of O(ααs) entering via the quantity ∆ρ arise from

diagrams as shown in figure 8, involving gluon and gluino exchange in (s)top-(s)bottom

loops. These contributions were evaluated in ref. [28]. We have incorporated this result

into the term ∆rMSSM−SM in eq. (3.12).

Besides the O(ααs) contributions, recently also the leading electroweak two-loop cor-

rections of O(α2
t ), O(α2

b) and O(αtαb) to ∆ρ have become available [30]. These two-loop
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(g)

t̃,b̃ t̃,b̃

g

(g̃)

t,b t̃,b̃

g̃

Figure 8: Sample diagrams for the SUSY O(ααs) contributions to ∆ρ: (g) squark loop with gluon

exchange, (g̃) (s)quark loop with gluino exchange.

(q)

t,b t,b

ϕ

(q̃)

t̃,b̃ t̃,b̃

ϕ

(H̃)

t̃,b̃ t,b

H̃

Figure 9: Sample diagrams for the three classes of MSSM O(α2
t ), O(α2

b ), O(αtαb) contributions to

∆ρ: (q) quark loop with Higgs exchange, (q̃) squark loop with Higgs exchange, (H̃) quark/squark

loop with Higgsino exchange. ϕ denotes Higgs and Goldstone boson exchange.

Yukawa coupling contributions are due to MSSM Higgs and Higgsino exchange in the

(s)top-(s)bottom-loops, see figure 9. In ref. [30] the dependence of the O(α2
t,b) corrections

on the lightest MSSM Higgs boson mass, Mh, has been analysed. Formally, at this order

the approximation Mh = 0 would have to be employed. However, it has been shown in

ref. [30] how a non-vanishing MSSM Higgs boson mass can be consistently taken into ac-

count, including higher-order corrections. Correspondingly we use the result of ref. [30] for

arbitrary Mh and employ the code FeynHiggs2.2 [38 – 40] for the evaluation of the MSSM

Higgs sector parameters.

The irreducible supersymmetric two-loop contributions to ∆r discussed above need to

be supplemented by the leading reducible two-loop corrections. The latter can be obtained

by expanding the resummation formula [53]

1 + ∆r =
1

(1 − ∆α)(1 + c2w
s2
w
∆ρ) − ∆rrem

(3.14)

up to the two-loop order. At this order eq. (3.14) correctly incorporates terms of the type

(∆α)2, (∆ρ)2, ∆α∆ρ and ∆α∆rrem. In this way we account for the leading terms of order

O(N2
f α2), where Nf is the number of fermions.

The final step is the inclusion of the complex MSSM parameters into the two-loop

results. So far all two-loop results have been obtained for real input parameters. We
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therefore approximate the two-loop result for a complex phase φ, M full
W (φ), by a simple

interpolation based on the full phase dependence at the one-loop level and the known

two-loop results for real parameters, M full
W (0), M full

W (π),

M full
W (φ) = M1L

W (φ) +
[

M full
W (0) − M1L

W (0)
]

× 1 + cos φ

2

+
[

M full
W (π) − M1L

W (π)
]

× 1 − cos φ

2
. (3.15)

Here M1L
W (φ) denotes the one-loop result, for which the full phase dependence is known.

The factors involving cos φ ensure a smooth interpolation such that the known results

M full
W (0), M full

W (π) are recovered for vanishing complex phase. In section 4.3 we estimate

the uncertainty in the MW prediction due to this approximate inclusion of the complex

phase dependence at the two-loop level.

3.3 Practical determination of ∆r

As can be seen from eqs. (2.3), (2.4) MW is directly related to ∆r, which however depends

on MW itself. In practical calculations we therefore find MW , using eq. (2.3), in an iterative

procedure. According to our strategy outlined above we obtain MW from ∆rSM and

∆rMSSM−SM. In order to make contact with the known SM result we use the compact

expression for the total SM result for MW as given in ref. [16]. This requires some care

in the iterative evaluation of MW . Since the compact expression for the SM result gives

MSM
W , its inversion yields ∆rSM(MSM

W ) rather than ∆rSM as function of the MSSM value

of MW , which should be inserted in eqs. (2.3), (3.12).

The desired expression for ∆rSM(MW ) is approximately given by

∆rSM(MW ) ≈
[

∆r(α) + ∆r(ααs) + ∆r(αα2
s) + ∆r(G2

µm4
t ) + ∆r

(α2)
ferm, red

+ ∆r(G2
µαsm4

t ) + ∆r(G3
µm6

t )
]

(MW )

+
[

∆r
(α2)
ferm, sublead + ∆r

(α2)
bos

]

(MSM
W ), (3.16)

where ∆r
(α2)
ferm, red are reducible two-loop contributions arising from eq. (3.14). All terms

of the first two lines of the right-hand side of eq. (3.16) are known analytically. The

numerically small contribution in the third line can therefore be obtained as

[

∆r
(α2)
ferm, sublead + ∆r

(α2)
bos

]

(MSM
W ) = ∆rSM(MSM

W ) −
[

∆r(α) + ∆r(ααs) + ∆r(αα2
s)

+ ∆r(G2
µm4

t ) + ∆r
(α2)
ferm, red

+ ∆r(G2
µαsm4

t ) + ∆r(G3
µm6

t )
]

(MSM
W ) (3.17)

from ∆rSM(MSM
W ) [16]. Here ∆r

(α2)
ferm, sublead denotes the subleading fermionic two-loop terms

beyond the leading m4
t term and the reducible terms. In this way the correct MW de-

pendence in ∆r is only neglected in the subleading electroweak two-loop contributions

∆r
(α2)
ferm, sublead + ∆r

(α2)
bos , which are numerically small. For ∆r(α) we use our recalculation,
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while for ∆r(ααs), ∆r(αα2
s), ∆r(G2

µm4
t ), ∆r(G2

µαsm4
t ) and ∆r(G3

µm6
t ) we use compact ex-

pressions from

refs. [18, 20, 52, 30]. Our final result for ∆rMSSM(MW ) reads

∆rMSSM(MW ) = ∆rSM(MW ) + ∆rMSSM−SM(MW ) , (3.18)

where ∆rSM(MW ) is given in eq. (3.16) and ∆rMSSM−SM(MW ) is the difference between

the full MSSM one-loop result as described in section 3.1 and the SM one-loop result

supplemented by the higher-order supersymmetric contributions specified in section 3.2.3.

Inserting this expression into eq. (2.3) one can now calculate MW using a standard iteration

which is rapidly convergent.

4. Numerical analysis

In the following subsections we present our numerical results. First the impact of the

one-loop contributions from the different sectors of the MSSM is systematically analysed,

and the dependence of the result on the different masses and complex phases is studied in

detail. As a second step we take into account all higher-order corrections and discuss the

full prediction for the W boson mass in the MSSM for a choice of sample scenarios.

For the numerical analysis the analytical results for ∆r and MW , which were calcu-

lated as described above, were implemented into a Fortran program. Though built up from

scratch, for the calculation of the MSSM particle spectrum our code partially relies on

routines which are part of the FormCalc package [49]. The Higgs sector parameters are ob-

tained from the program FeynHiggs2.2 [38 – 40]. This Fortran program for the calculation

of precision observables within the MSSM will be made publicly avaliable [54].

If not stated otherwise, in the numerical analysis below for simplicity we choose all

soft SUSY-breaking parameters in the diagonal entries of the sfermion mass matrices to be

equal,

Mf̃ ≡ MF̃ = MF̃ ′ = . . . , (4.1)

see eq. (2.5). In the neutralino sector the GUT relation

M1 =
5

3

s2
w

c2
w

M2 (4.2)

(for real values) is often used to reduce the number of free MSSM parameters. We have

kept M1 as a free parameter in our analytical calculations, but will use the GUT relation

to specify M1 for our numerical analysis if not stated otherwise.

We have fixed the SM input parameters as 2

Gµ = 1.16637 × 10−5, MZ = 91.1875 GeV, αs(MZ) = 0.117,

α = 1/137.03599911, ∆α
(5)
had = 0.02761[55], ∆αlep = 0.031498[56],

mt = 172.5 GeV mb = 4.7 GeV, mτ = mc = . . . = 0

(4.3)

2For the results shown in section 4.1 we use mt = 172.7±2.9 GeV [57]. For the comparison of theoretical

predictions with experimental data in section 4.2 we use the most up to date value mt = 172.5 ± 2.3 GeV,

which has recently become available [58].
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The complex phases appearing in the cMSSM are experimentally constrained by their

contribution to electric dipole moments of heavy quarks [59], of the electron and the neutron

(see refs. [60, 61] and references therein), and of deuterium [62]. While SM contributions

enter only at the three-loop level, due to its complex phases the cMSSM can contribute

already at one-loop order. Large phases in the first two generations of (s)fermions can only

be accomodated if these generations are assumed to be very heavy [63] or large cancellations

occur [64], see however the discussion in ref. [65]. Accordingly (using the convention that

φM2 = 0), in particular the phase φµ is tightly constrained [66], while the bounds on the

phases of the third generation trilinear couplings are much weaker.

4.1 Analysis of parameter and phase dependence

We begin by studying the impact of the one-loop contributions to ∆r from the various

MSSM sectors, i.e. the sfermion sector, the chargino and neutralino sector, as well as the

gauge boson and Higgs sector. In order to be able to analyse the different sectors separately,

we do not solve eq. (2.3) using our complete result for ∆r, but we rather investigate the

mass shift δMW arising from changing ∆r by the amount ∆rSUSY,

δMW = −M ref
W

2

s2
w

c2
w − s2

w

∆rSUSY. (4.4)

Here ∆rSUSY represents the one-loop contribution from the supersymmetric particles of

the considered sector of the MSSM. We fix the (in principle arbitrary) reference value for

MW in eq. (4.4) to be M ref
W = 80.425 GeV. Our full result for MW , which is determined

from eq. (2.3) in an iterative procedure, is of course independent of this reference value.

4.1.1 Sfermion sector dependence

We first investigate the influence of sfermion one-loop contributions, which enter via the

gauge-boson self-energy diagrams depicted in figure 2. The selectron and smuon contribu-

tions to the electron and muon field renormalisations shown in figure 6 and to the vertex

and box diagrams shown in figure 7 will be discussed as part of the chargino and neutralino

contributions in section 4.1.2.

The leading one-loop SUSY contributions to ∆r arise from the t̃/b̃ doublet. Since

the mass of the partner fermion appears in the sfermion mass matrices, see eq. (2.5), a

significant splitting between the diagonal entries can be induced in the stop sector. The

off-diagonal elements in the stop sector and for large tan β also in the sbottom sector can

furthermore give rise to a large mixing between the two states of one flavour.

The complex parameters in the t̃/b̃ sector are µ, At and Ab. Neither the µ nor the A

parameters appear explicitly in the couplings of the diagrams of figure 2. They only enter

via the absolute values and phases of Xt,b, the off-diagonal entries of the squark mixing

matrices. We have checked at the analytical level that the phases φXt,b
drop out entirely in

the full one-loop calculation of ∆r and have no influence on MW . Hence, the phases and

absolute values of µ, At and Ab enter the sfermion-loop contributions (at one-loop order)
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only via

|Xt|2 = |At|2 + |µ cot β |2 − 2|At| · |µ| cot β cos(φAt + φµ), (4.5)

|Xb|2 = |Ab|2 + |µ tan β|2 − 2|Ab| · |µ| tan β cos(φAb
+ φµ). (4.6)

In particular, the phases φAt,b
and φµ only enter in the combinations (φAt,b

+ φµ) and only

via modifications of the squark masses and mixing angles.

The phase dependence is illustrated in figsures 10 and 11, where the squark loop contri-

butions to δMW (evaluated from eq. (4.4)) are shown as function of the phase combination

(φA + φµ) with φAt = φAb
. Since the phases enter only via |Xt,b|, their influence is most

significant if all terms in eqs. (4.5), (4.6) are of a similar magnitude. This is the case if

tan β is rather small and |µ| and |At,b| are of the same order. Such a situation is displayed

in figure 10 and the left panel of figure 11, where tanβ = 5 and |At| = |Ab| = 2Mf̃ has

been chosen. figure 10 shows the effect on δMW from varying the phase (φA + φµ) for a

fixed value of |µ| = 900 GeV and Mf̃ = 500, 600, 1000 GeV, while in figure 11 the squark

sector contributions to δMW are shown as contour lines in the plane of (φA + φµ) and |µ|.
In the scenario with tan β = 5 (figure 10 and left panel of figure 11) the variation of the

complex phase (φA +φµ) can amount to a shift in the W boson mass of more than 20 MeV.

The most pronounced phase dependence is obtained for the largest sfermion mixing, i.e.

the smallest value of Mf̃ and the largest value of |µ|.
The right panel of figure 11 shows a scenario where tan β is rather large, tan β = 30.

As a consequence, |Xt| ≈ |At| and |Xb| ≈ |µ tan β|, so that the absolute values of Xt and

Xb depend only very weakly on the complex phases. The plot clearly displays the resulting

much weaker phase dependence compared to the scenario in the left panel of figure 11. The

variation of the complex phase gives rise only to shifts in MW of less than 0.5 MeV, while

changing |µ| between 100 and 500 GeV leads to a shift in MW of about 2 MeV.

In the following plots we discuss the dependence of the sfermion loop contributions to

δMW on the common sfermion mass Mf̃ . In figure 12 we show the squark contributions as

function of Mf̃ for various values of (φAt + φµ) and for (φAb
+ φµ) = 0. The intermediate

value tan β = 10 is chosen, and |At,b| = 350 GeV, |µ| = 300 GeV. In agreement with the

discussion above, the phase dependence is relatively small. It leads to a shift of about

5 MeV in MW for low values of Mf̃ ≈ 250 GeV, where the stop mixing is large. The total

squark contributions can shift the prediction of MW by up to 30 MeV for small Mf̃ . For

large Mf̃ the squark contributions show the expected decoupling behaviour. However, even

for sfermion masses as large as Mf̃ = 1000 GeV the shift in MW is still about 4 MeV, i.e.

half the size of the anticipated GigaZ accuracy.

In figure 13 we show the squark and slepton contributions for the same parameters as

before except that (φAt +φµ) = 0 and (φAb
+φµ) is varied. The effect of the phase (φAb

+φµ)

in the squark contributions is negligible since the sbottom mixing is small and moreover

|Xb| ≈ |µ| tan β, making its phase dependence insignificant. The slepton contributions

(entering via the diagrams in figure 2) yield a shift in MW of up to 10 MeV for small

Mf̃ , i.e. about a third of the squark contributions. Even for the slepton contributions

the dominant effect (about 60% of the total shift in MW ) can be associated with ∆ρ, as a
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Figure 10: Squark contributions to δMW as function of the phase (φA + φµ), where φA ≡ φAt
=

φAb
, for different values of the common sfermion mass Mf̃ = 500, 600, 1000 GeV. The other relevant

SUSY parameters are set to tan β = 5, |At,b| = 2Mf̃ , |µ| = 900 GeV.

consequence of the D-term splitting of the sleptons. For large Mf̃ the slepton contributions

show the expected decoupling behaviour.

4.1.2 Chargino and neutralino sector dependence

In this subsection we analyse the one-loop contributions from neutralinos and charginos

to δMW , entering via the self-energy, vertex and box diagrams shown in figsures 6 and

7. In this sector the parameters M1, M2 and µ can be complex. However, there are only

two physical complex phases since one of the two phases of M1 and M2 can be rotated

away. As commonly done we choose to rotate away the phase of M2. Generally, the phase

dependence in this sector can be expected to be smaller than in the sfermion sector since

the chargino/neutralino mass matrices are dominated by their diagonal elements, and the

mass eigenvalues are mainly determined by |µ|, |M1,2|, so that their phase dependence is

small.

The phase dependence is illustrated by figure 14, where the chargino/neutralino con-

tributions to MW are shown as function of |µ| (left panel) and as contour lines in the

φµ–|µ| plane (right panel) for φM1 = 0. The other parameters are Mf̃ = 500 GeV,

M1 = M2 = 200 GeV and tan β = 10. The effect of varying φµ is much smaller than

the overall contribution of the chargino/neutralino sector. In the scenario of figure 14 the

chargino/neutralino contributions lead to a shift in the prediction for MW of up to 11 MeV

for small |µ|, while the effect of varying φµ does not exceed 1 MeV. We have checked that

also the dependence on φM1 is insignificant.
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Figure 11: Contour lines of the squark contributions to δMW in the plane of (φA + φµ) and

|µ|, where φA ≡ φAt
= φAb

. The upper plot shows a scenario with tanβ = 5, Mf̃ = 500 GeV,

|At,b| = 1000 GeV, while in the lower plot tanβ = 30, Mf̃ = 600 GeV, |At,b| = 1200 GeV.

In figure 15 we investigate the impact of varying |M1| and |M2| for zero complex phases.

The other relevant parameters are Mf̃ = 250 GeV, |µ| = 300 GeV, tan β = 10. The shift in

MW induced by varying |M2| can reach up to 15 MeV (i.e. the anticipated LHC precision).
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Figure 12: Squark contributions to δMW as function of a common sfermion mass Mf̃ for different

values of (φAt
+ φµ). The other relevant SUSY parameters are: |At,b| = 350 GeV, (φAb

+ φµ) = 0,

|µ| = 300 GeV and tanβ = 10.
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Figure 13: Squark and slepton contributions to δMW as function of a common sfermion mass Mf̃

for different values of (φAb
+ φµ). The other relevant SUSY parameters are: |At,b| = 350 GeV,

(φAt
+ φµ) = 0, |µ| = 300 GeV and tanβ = 10.
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Figure 14: Neutralino and chargino contributions to δMW . The upper plot shows δMW as function

of |µ| for different values of φµ, while the lower plot displays the contour lines of δMW in the φµ–

|µ| plane. The other relevant SUSY parameters are: φM1
= φM2

= 0, |M1| = |M2| = 200 GeV,

tan β = 10 and Mf̃ = 500 GeV.

This is larger than the maximum shift in figure 14 because of the smaller sfermion masses.

On the other hand, the effect of varying |M1| stays below ∼ 2 MeV.
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Figure 15: Neutralino and chargino contributions to δMW as function of |M1| and |M2|. The

other relevant SUSY parameters are: φM1
= φM2

= φµ = 0, |µ| = 300 GeV, tanβ = 10 and

Mf̃ = 250 GeV.

4.1.3 Gauge boson and Higgs sector dependence

Finally we discuss the one-loop effects on MW from the gauge and Higgs sectors. In order

to identify the genuine SUSY effects, we compare the contribution in the MSSM with the

one in the SM (where the Higgs-boson mass in the SM is set equal to the mass of the

light CP-even Higgs boson of the MSSM, MHSM = MMSSM
h ). The corresponding diagrams

are shown in figsures 3, 4 and 5, where only the diagrams shown in figure 4 differ in the

MSSM and the SM. The parameters governing the Higgs sector at the tree level are MA and

tan β in the MSSM and MHSM in the SM. Since we incorporate higher-order contributions

into the predictions for the MSSM Higgs masses and mixing angles, which are evaluated

using the program FeynHiggs, further SUSY parameters enter the prediction for the gauge-

boson and Higgs sector contribution. The effect of complex phases entering via the MSSM

Higgs sector is formally of two-loop order. We therefore restrict to real parameters in this

subsection.

In figure 16 the shift δMW is given as a function of MA in the MSSM and in the SM

(with MHSM = MMSSM
h ). The parameter tan β is fixed to tan β = 5, 25, which affects

MMSSM
h and accordingly also MHSM . The other SUSY parameters are chosen as Mf̃ =

600 GeV, At,b = 1200 GeV, µ = 500 GeV, mg̃ = 500 GeV, M2 = 500 GeV. figure 16

shows that the overall effect of the gauge and Higgs boson sector is rather large, up to

−60 MeV, which corresponds to about twice the current experimental error on MW . The

shift in the W boson mass obtained in the MSSM is slightly larger than in the SM. However,

this genuine SUSY effect, i.e. the difference between the MSSM and the SM value of δMW ,
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Figure 16: The contribution δMW to the prediction for the W boson mass from the gauge-boson

and Higgs sector contributions in the MSSM and the SM, where the SM contributions are evaluated

for MHSM = MMSSM
h . The shift δMW is given as a function of the CP-odd Higgs-boson mass MA and

tan β = 5, 25. The other SUSY parameters were chosen to be: Mf̃ = 600 GeV, At,b = 1200 GeV,

µ = 500 GeV, mg̃ = 500 GeV, M2 = 500 GeV.

is always below ∼ 2 MeV for tan β = 5 and smaller than ∼ 5 MeV for tan β = 25. The

genuine SUSY effect is therefore below the anticipated GigaZ accuracy.

4.2 Prediction for MW

In this section we combine all known contributions as described in section 3.2 and analyse

the parameter dependence of this currently most accurate MSSM prediction for MW in

various scenarios. These predictions are compared with the current experimental value for

MW [2],

M exp
W = 80.404 ± 0.030 GeV . (4.7)

4.2.1 Dependence on SUSY parameters

We start by comparing our full MSSM prediction for MW with the corresponding SM value

(with MHSM = Mh) as a function of MA in figure 17. Like in figure 16 the other parameters

are Mf̃ = 600 GeV, At,b = 1200 GeV, µ = 500 GeV, mg̃ = 500 GeV, M2 = 500 GeV. tan β

is set to tan β = 5, 25. It can be seen in figure 17 that for this set of parameters the MSSM

prediction is about 20 MeV higher than the SM prediction. While the MSSM prediction

is within 1σ of the experimental value of MW , the SM prediction lies in the 1–2σ interval.

In figure 18 we show the prediction for MW as a function of Mf̃ and indicate how

this prediction changes if the top-quark mass is varied within its experimental 1σ interval,
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Figure 17: Prediction for MW in the MSSM and the SM, where the SM contributions are evaluated

for MHSM = MMSSM
h . The prediction for MW is shown as function of the CP-odd Higgs-boson mass

MA for tanβ = 5, 25. The other SUSY parameters are: Mf̃ = 600 GeV, At,b = 2 Mf̃ , µ = 500 GeV,

mg̃ = 500 GeV, M2 = 500 GeV.

mt = (172.5 ± 2.3) GeV [58]. The other parameters are At,b = 2Mf̃ , µ = MA = mg̃ =

M2 = 300 GeV, and tan β = 10. The result is compared with the current experimental

value of MW . It can be seen in figure 18 that the observable MW exhibits a slight preference

for a relatively low SUSY scale, see also refs. [5, 6] for a recent discussion of this issue. For

the current experimental central value of the top-quark mass, MW lies in the experimental

1σ-interval only for a SUSY mass scale of Mf̃
<∼ 800 GeV. Increasing mt by one standard

deviation allows Mf̃ up to at least 1300 GeV at the 1σ level for this set of SUSY parameters.

In figure 19 we show the dependence of MW on µ and M2. The other parameters are set

to Mf̃ = 300 GeV, At,b = 2Mf̃ , MA = 1000 GeV, mg̃ = 600 GeV, tan β = 10. As can be

seen in figure 19, varying µ between about 200 GeV and 1000 GeV results in a downward

shift of more than 40 MeV in MW . This strong dependence on the µ parameter is due

to the neutralino and chargino as well as the squark contributions (one- and two-loop) to

∆r. The sensitivity to the µ parameter from both MSSM particle sectors adds up and

leads to the large shifts shown in figure 19. The neutralino and chargino contributions are

responsible for roughly one third of the 40 MeV shift for small M2 and become negligible

for large M2, with the remaining MSSM parameters specified as given above. The shift

induced by varying M2 between about 100 GeV and 1000 GeV (as explained above, M2

and M1 are varied simultaneously according to eq. (4.2)) amounts up to about 15 MeV in

MW . For the relatively small value chosen for the common sfermion mass, Mf̃ = 300 GeV,

all combinations of µ and M2 yield a result within 1σ of the experimental result of MW .

Using instead a larger SUSY mass scale of, for instance, Mf̃ = 600 GeV would result in
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Figure 18: Prediction for MW as function of a common sfermion mass for mt = (172.5±2.3) GeV.

The other SUSY parameters are set to be: At,b = 2 Mf̃ , tanβ = 10, µ = 300 GeV, mg̃ = 300 GeV,

MA = 300 GeV, M2 = 300 GeV.

MW values within the experimental 1σ interval only for µ <∼ 500 GeV.

Finally we discuss the effect of varying the complex phase φAt on the prediction for

MW . As explained above, we use our complete one-loop result for the phase dependence

and employ eq. (3.15) to approximate the effect of the complex phases at the two-loop level.

In figure 20 the prediction for MW is shown as a function of φAt for |At,b| = 1000 GeV,

φAb
= 0, tan β = 10, mg̃ = 500 GeV, MA = 500 GeV, M2 = 250 GeV and µ = 500 GeV.

The results are plotted for Mf̃ = 500 GeV, 600 GeV and 1000 GeV. The dependence on

φAt is at most of the order 2 MeV for Mf̃ = 500 GeV, 600 GeV. For heavier sfermions

with Mf̃ = 1000 GeV only a 1 MeV shift in MW can be observed.

As explained above, our result for MW goes beyond the results previously known in

the literature [3] because of the inclusion of complex phases and an improved treatment of

higher-order SM contributions. We have checked that for real parameters our new result

agrees with the previously most advanced implementation [3] typically within about 5 MeV.

4.2.2 The SPS inspired benchmark scenarios

In this subsection we show MW in the SPS 1a, SPS 1b and SPS 5 benchmark scenarios [34].

This should give an indication of the MW prediction within “typical” constrained MSSM

(CMSSM) scenarios. In the original definition the SPS parameters are DR parameters.

Here we treat them as on-shell input parameters for simplicity, since the effects of the DR

to on-shell transition are expected to be small and therefore irrelevant for the qualitative

features that we discuss. In order to analyse the dependence of MW on the scale of

supersymmetry we introduce a scale factor. Every SUSY parameter of mass dimension of
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Figure 19: Prediction for MW as function of M2 for µ = 250 GeV, 500 GeV, 1000 GeV (upper

plot) and as function of µ for M2 = 150 GeV, 250 GeV, 500 GeV, 1000 GeV (lower plot). The other

SUSY parameters are: Mf̃ = 300 GeV, At,b = 2 Mf̃ , tanβ = 10, mg̃ = 600 GeV, MA = 1000 GeV.

the considered SPS point is multiplied by this parameter, i.e. MA = (scalefactor)×MSPS
A ,

MF̃ ,F̃ ′ = (scalefactor) × MSPS
F̃ ,F̃ ′

, At,b = (scalefactor) × ASPS
t,b , µ = (scalefactor) × µSPS,

M1,2,3 = (scalefactor) × MSPS
1,2,3.

In figure 21 we show the result for the three SPS scenarios as a function of the lighter t̃

mass, mt̃1
(left plot), and as a function of MA (right plot). The prediction for MW is similar
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Figure 20: Prediction for MW as a function of the phase of At using relation (3.15). The SUSY

parameters are |At,b| = 1000 GeV, φAb
= 0, tanβ = 10, mg̃ = 500 GeV, MA = 500 GeV, M2 =

250 GeV and µ = 500 GeV.

in all three scenarios. The variation of the dimensionful SUSY parameters shifts the MSSM

prediction for MW by up to 35 MeV. As can be seen in the left plot of figure 21, agreement

at the 1σ level with the experimental result is obtained for mt̃1
<∼ 600 GeV. Since we scale

all dimensionful parameters simultaneously, the variation from small to large mt̃1
(left plot)

is the same as the one from small to large MA (right plot). However, for the same MA

value the three scenarios can differ also by up to ∼ 30 MeV.

For large values of the SUSY mass scale one expects a decoupling behaviour of the

SUSY contributions, i.e. one expects that the prediction for MW in the MSSM coincides

with the SM prediction (for MHSM = MMSSM
h ) in the limit of large SUSY masses. We

analyse the decoupling behaviour in figure 22 for the SPS 1a scenario. We compare the

MSSM prediction with the corresponding SM prediction of MW with MHSM = MMSSM
h .

For mt̃1
<∼ 500 GeV large deviations between the MSSM and the SM prediction can be

observed. For mt̃1
>∼ 2500 GeV the difference drops below the level of 1 MeV, and for even

larger mt̃1
values the MSSM result converges to the SM result. It should be noted in this

context that the prescription described in section 3.2.1 (see eq. (3.12)) has been crucial in

order to recover the most up-to-date SM prediction for MW in the decoupling limit.

4.2.3 The focus point scenario

As we have seen in the previous section, a relatively light SUSY scale leads to a prediction

for MW within the CMSSM (and of course also the unconstrained MSSM) that is in slightly

better agreement with the experimental value of MW than the SM prediction. A region

of the CMSSM that has found a considerable interest in the last years is the so-called

focus point region [67]. This region is characterized by a relatively small fermionic mass

parameter, m1/2, while the common scalar mass parameter m0 is very large, and also tan β
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Figure 21: Prediction for MW within the SPS 1a, SPS 1b and SPS 5 inspired scenarios. MW is

shown as a function of mt̃1
, the lighter of the two stop squarks (upper plot), and as a function of

MA, the mass of the CP-odd Higgs boson (lower plot). The SPS parameters of mass dimension are

varied with the scale of supersymmetry as described in the text.

is relatively large.3 We now investigate whether it is also possible to obtain a prediction

3The CMSSM is characterized in terms of three GUT-scale parameters, the common fermionic mass

parameter m1/2, the common scalar mass parameter m0, and the common trilinear coupling A0. These

high-scale parameters are supplemented by the low-scale parameter tan β and the sign of µ.
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Figure 22: Prediction for MW in the decoupling limit compared to the SM prediction with MHSM =

MMSSM
h . MW is shown as function of the light stop mass mt̃1

in the SPS 1a benchmark scenario.

All dimensionful SUSY parameters are scaled with a common factor, as described in the text.

for MW that is in better agreement with the experimental value than the SM prediction if

the MSSM parameters are restricted to the focus point region.

We have evaluated three representative scenarios, using mt = 172.5 GeV, tan β = 50

and µ > 0. We have chosen a point with the currently lowest value of m1/2 in the focus

point region for which the dark matter density is allowed by WMAP and other cosmological

data (see e.g. ref. [6] for a more detailed discussion) and two further points with higher

m1/2 (and higher m0) along the strip in the m1/2–m0 plane that is allowed by the dark

matter constraints. These points yield the following results for MW in the MSSM

(1) m1/2 = 250 GeV,m0 = 1650 GeV, A0 = −250 GeV

⇒ MW = 80.380 GeV, MSM
W (MHSM = MMSSM

h ) = 80.361 GeV, (4.8)

(2) m1/2 = 330 GeV,m0 = 2030 GeV, A0 = −330 GeV

⇒ MW = 80.372 GeV, MSM
W (MHSM = MMSSM

h ) = 80.360 GeV, (4.9)

(3) m1/2 = 800 GeV,m0 = 3685 GeV, A0 = −800 GeV

⇒ MW = 80.361 GeV, MSM
W (MHSM = MMSSM

h ) = 80.359 GeV, (4.10)

where the low-scale parameters of the MSSM have been obtained from the high-scale pa-

rameters m1/2, m0, A0 with the help of the program ISAJET 7.71 [68]. For comparison,

the corresponding prediction in the SM with MHSM = MMSSM
h is also given.

One can see from eqs. (4.8)–(4.10) that only for the point with the lowest m1/2 value a

large difference of up to ∼ 20 MeV occurs in comparison to the SM result. Such low m1/2
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values correspond to very low masses of neutralinos and charginos. As a consequence, the

main contribution to the shift in MW arises from the chargino and neutralino sector (see

section 4.1.2). Since for the m0 value of eq. (4.8) the squarks are not completely decoupled,

there is also a small contribution from the squark sector. Already with slightly higher

m1/2 values, eq. (4.9), the contribution to MW becomes much smaller. For even higher

values, eq. (4.10), the resulting prediction for MW is very close to the corresponding SM

(decoupling) limit. These predictions deviate by about 1.5σ from the current experimental

value of MW , eq. (4.7). The focus point region therefore improves the prediction for MW

only for very low m1/2. For most of the allowed parameter space, however, the improvement

is small. The deviation in MW contributes to the relatively bad fit quality of the focus

point region in a fit to electroweak precision observables as observed in ref. [6].

4.2.4 Split SUSY

Another scenario that has recently found attention is the so-called “split-SUSY” sce-

nario [69]. Here scalar mass parameters are made very heavy and only the fermionic

masses (i.e. the chargino, neutralino and gluino masses) are relatively small. According to

the analysis in the previous sections only a small deviation in the MW prediction from the

SM limit is to be expected.

We have evaluated the prediction for MW in the split-SUSY scenario. In figure 23

we show the SUSY contribution to MW , i.e. the deviation between the MSSM result in

the split-SUSY scenario and the corresponding SM result. This deviation is obtained by

choosing a large value for Mf̃ and subtracting the SM result with MHSM = MMSSM
h . For

definiteness we have chosen Mf̃ = 3 TeV and MA = 2 TeV. Choosing a higher scale for

the scalar mass parameters would lead to even slightly smaller deviations from the SM

prediction than the ones shown in figure 23. The resulting shifts in MW are displayed in

figure 23 in the µ–M2 plane for tan β = 10. The gluino mass has been set to mg̃ = 300 GeV,

however no visible change in figure 23 occurs even for mg̃ = 3000 GeV. As expected, only

for rather small values of µ and M2, M2
<∼ 400 GeV and |µ| <∼ 500 GeV a deviation from

the SM limit larger than 5 MeV is found (a similar result has been obtained in ref. [70], see

also ref. [71]). Even with the GigaZ precision for MW only a very light chargino/neutralino

spectrum would result in a 1σ deviation in MW compared to the SM prediction.

4.2.5 MSSM parameter scans

Finally, we analyse the overall behaviour of MW in the MSSM by scanning over a broad

range of the SUSY parameter space. The following SUSY parameters are varied indepen-

dently of each other, within the given range, in a random parameter scan:
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Figure 23: Difference between the result for MW in the MSSM and the SM for large scalar fermion

masses. The SUSY parameters are Mf̃ = 3000 GeV, At,b = 2 Mf̃ , mg̃ = 300 GeV, MA = 2000 GeV

and tanβ = 10.

sleptons : MF̃ ,F̃ ′ = 100 . . . 2000 GeV

light squarks : MF̃ ,F̃ ′

up/down
= 100 . . . 2000 GeV

t̃/b̃ doublet : MF̃ ,F̃ ′

up/down
= 100 . . . 2000 GeV

At,b = −2000 . . . 2000 GeV

gauginos : M1,2 = 100 . . . 2000 GeV

mg̃ = 195 . . . 1500 GeV

µ = −2000 . . . 2000 GeV

Higgs : MA = 90 − 1000 GeV

tan β = 1.1 . . . 60 (4.11)

We have taken into account the constraints on the MSSM parameter space from the

LEP Higgs searches [72, 73] and the lower bounds on the SUSY particle masses from

ref. [35]. Apart from these constraints no other restrictions on the MSSM parameter space

were made.

In figure 24 we show the result for MW as a function of the lightest t̃ mass, mt̃1
. The

top-quark mass has been fixed to its current experimental central value, mt = 172.5 GeV.

The results are divided into a dark (green) shaded and a light (green) shaded area. In the
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Figure 24: Prediction for MW as function of mt̃1
, the mass of the lighter stop squark. The SUSY

parameters are varied independently of each other in a random parameter scan as described in the

text. The top-quark mass is fixed at its current experimental central value, mt = 172.5 GeV.

latter at least one of the ratios mt̃2
/mt̃1

or mb̃2
/mb̃1

exceeds 2.5,4 i.e. the darker shaded

region corresponds to a moderate splitting among the t̃ or b̃ doublets. In this region the

MSSM prediction for MW does not exceed values of about 80.550 GeV. In the case of very

large splitting in the t̃ and b̃ doublets, much larger MW values up to 81.150 GeV would be

possible (which are of course ruled out by the experimental measurement of MW ).

In figure 25 we compare the SM and the MSSM predictions for MW as a function of

mt as obtained from the scatter data. The predictions within the two models give rise

to two bands in the mt–MW plane with only a relatively small overlap region (indicated

by a dark-shaded (blue) area in figure 25). The allowed parameter region in the SM (the

medium-shaded (red) and dark-shaded (blue) bands) arises from varying the only free

parameter of the model, the mass of the SM Higgs boson, from MHSM = 114 GeV, the

LEP exclusion bound [73] (upper edge of the dark-shaded (blue) area), to 400 GeV (lower

edge of the medium-shaded (red) area). The very light-shaded (green), the light shaded

(green) and the dark-shaded (blue) areas indicate allowed regions for the unconstrained

MSSM. In the very light-shaded region (see figure 24) at least one of the ratios mt̃2
/mt̃1

or

mb̃2
/mb̃1

exceeds 2.5, while the decoupling limit with SUSY masses of O(2 TeV) yields the

lower edge of the dark-shaded (blue) area. Thus, the overlap region between the predictions

4We work in the convention that mf̃1
≤ mf̃2

.
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Figure 25: Prediction for MW in the MSSM and the SM as a function of mt in comparison

with the present experimental results for MW and mt and the prospective accuracies (using the

current central values) at the Tevatron / LHC and at the ILC. The allowed region in the MSSM,

corresponding to the light-shaded (green) and dark-shaded (blue) bands, results from varying the

SUSY parameters independently of each other in a random parameter scan. The allowed region

in the SM, corresponding to the medium-shaded (red) and dark-shaded (blue) bands, results from

varying the mass of the SM Higgs boson from MH = 114 GeV to MH = 400 GeV. Values in the

very light shaded region can only be obtained in the MSSM if at least one of the ratios mt̃2
/mt̃1

or

mb̃2
/mb̃1

exceeds 2.5.

of the two models corresponds in the SM to the region where the Higgs boson is light, i.e.

in the MSSM allowed region (Mh
<∼ 135 GeV [38, 39]). In the MSSM it corresponds to

the case where all superpartners are heavy, i.e. the decoupling region of the MSSM. The

current 68% C.L. experimental results5 for mt and MW are indicated in the plot. As

can be seen from figure 25, the current experimental 68% C.L. region for mt and MW

exhibit a slight preference of the MSSM over the SM. The prospective accuracies for the

Tevatron/LHC (δm
Tevatron/LHC
t = 1 GeV, δM

Tevatron/LHC
W = 15 MeV) and the ILC with

GigaZ option (δm
ILC/GigaZ
t = 0.1 GeV, δM

ILC/GigaZ
W = 7 MeV) are also shown in the plot

(using the current central values), indicating the potential for a significant improvement of

the sensitivity of the electroweak precision tests [74].

5The plot shown here is an update of refs. [24, 3].
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4.3 Remaining higher-order uncertainties

As explained above, we have incorporated all known SM corrections into the prediction

for MW in the MSSM, see eq. (3.12). This implies that the theoretical uncertainties from

unknown higher-order corrections reduce to those in the SM in the decoupling limit. In

the SM, based on all higher-order contributions that are currently known, the remaining

uncertainty in MW has been estimated to be [16]

δMSM
W = 4 MeV . (4.12)

Below the decoupling limit an additional theoretical uncertainty arises from higher-order

corrections involving supersymmetric particles in the loops. This uncertainty has been

estimated in ref. [30] for the MSSM with real parameters depending on the overall sfermion

mass scale Mf̃ ,

δMW = 8.5 MeV for Mf̃ < 500 GeV,

δMW = 2.7 MeV for Mf̃ = 500 GeV, (4.13)

δMW = 2.4 MeV for Mf̃ = 1000 GeV.

The full theoretical uncertainty from unknown higher-order corrections in the MSSM with

real parameters can be obtained by adding in quadrature the SM uncertainties from

eq. (4.12) and the SUSY uncertainties from eq. (4.13). This yields δMW = (4.7 − 9.4) MeV

depending on the SUSY mass scale [30].

Allowing SUSY parameters to be complex adds an additional theoretical uncertainty

from unknown higher-order corrections to the MW prediction. While at the one-loop level

the full complex phase dependence is included in our evaluation, it is only approximately

taken into account at the two-loop level as an interpolation between the known results for

the phases 0 and π, see eq. (3.15). We concentrate here on the complex phase in the scalar

top sector, φAt (we keep φµ fixed), since our analysis above has revealed that the impact

of the other phases is very small already at the one-loop level.

We estimate the uncertainty from unknown higher-order corrections associated with

the phase dependence as follows. The full result for MW (φ), i.e. for a given phase φ

(where the two-loop corrections are taken into account as described in section 3.2.3) lies

by construction in the interval

[M full
W (0) + (M1L

W (φ) − M1L
W (0)), M full

W (π) + (M1L
W (φ) − M1L

W (π))] . (4.14)

The minimum difference of M full
W (φ) to the boundary of this interval,

Min{|M full
W (φ) − (M full

W (0) + (M1L
W (φ) − M1L

W (0)))|,
|M full

W (φ) − (M full
W (π) + (M1L

W (φ) − M1L
W (π)))|} , (4.15)

can be taken as estimate for the theoretical uncertainty (this automatically ensures that

no additional uncertainties arise for φ = 0, π).
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As representative SUSY scenarios we have chosen SPS 1a, SPS 1b, and SPS 5, each

for Mf̃ = 1000 GeV, 500 GeV, and for Mf̃ < 500 GeV 6 (as above we have varied Mf̃ , At,b

and µ using a common scale factor). A non-zero complex phase φAt has been introduced

as an additional parameter. In order to arrive at a conservative estimate for the intrinsic

error, we use the value obtained for φAt = ±π/2. In this way we obtain

δMW = 3.2 MeV for Mf̃ < 500 GeV,

δMW = 2.0 MeV for Mf̃ = 500 GeV, (4.16)

δMW = 0.7 MeV for Mf̃ = 1000 GeV.

The full theoretical uncertainty from unknown higher-order corrections in the MSSM with

complex parameters can now be obtained by adding in quadrature the SM uncertainties

from eq. (4.12), the theory uncertainties from eq. (4.13) and the additional SUSY uncer-

tainties from eq. (4.16). This yields δMW = (4.7−9.9) MeV depending on the SUSY mass

scale.

The other source of theoretical uncertainties besides the one from unknown higher-

order corrections is the parametric uncertainty induced by the experimental errors of the

input parameters. The current experimental error of the top-quark mass [58] induces the

following parametric uncertainty in MW

δmexp
t = 2.3 GeV ⇒ δMpara,mt

W = 14 MeV , (4.17)

while the uncertainty in ∆α
(5)
had [75] results in

δ(∆α
(5)
had) = 3.6 × 10−4 ⇒ δM

para,∆α
(5)
had

W = 6.5 MeV . (4.18)

The uncertainty in mt will decrease during the next years as a consequence of a further

improvement of the accuracies at the Tevatron and the LHC. Ultimately it will be reduced

by more than an order of magnitude at the ILC [76]. For ∆α
(5)
had one can hope for an

improvement down to 5 × 10−5 [77], reducing the parametric uncertainty to the 1 MeV

level (for a discussion of the parametric uncertainties induced by the other SM input

parameters see e.g. ref. [3]). The effect of δ(∆α
(5)
had) on figure 25 is small. In order to reduce

the theoretical uncertainties from unknown higher-order corrections to the 1 MeV level,

further results on SM-type corrections beyond two-loop order and higher-order corrections

involving supersymmetric particles will be necessary.

5. Conclusions

We have presented the currently most accurate evaluation of the W boson mass in the

MSSM. The calculation includes the complete one-loop result, taking into account for the

first time the full complex phase dependence, and all known higher-order corrections in

6The lowest values considered for Mf̃ are roughly 300, 300, 400 GeV for SPS 1a, SPS 1b, SPS 5,

respectively. For lower values the parameter points are excluded by Higgs mass constraints. The light stop

mass for the SPS 5 point lies considerably below 400 GeV.
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the MSSM. Since the evaluation of higher-order contributions in the SM is more advanced

than in the MSSM, we have incorporated all available SM corrections which go beyond

the results obtained so far in the MSSM. Our prediction for MW in the MSSM therefore

reproduces the currently most up-to-date SM prediction for MW in the decoupling limit

where the masses of all supersymmetric particles are large. A public computer code based

on our result for MW is in preparation.

We have analysed in detail the impact of the various sectors of the MSSM on the pre-

diction for MW , focussing in particular on the dependence on the complex phases entering

at the one-loop level. The most pronounced phase dependence occurs in the stop sector,

where the effect of varying the complex phase that enters the off-diagonal element in the

stop mass matrix can amount to a shift of more than 20 MeV in MW . It should be noted,

however, that the complex phases in the squark sector at the one-loop level enter only

via modifications of the squark masses and mixing angles. As a consequence, a precision

measurement of the CP-conserving observable MW alone will not be sufficient to reveal the

presence of CP-violating complex phases. The phase dependence of MW will however be

very valuable for constraining the SUSY parameter space in global fits where all accessible

experimental information is taken into account.

We have illustrated the sensitivity of the precision observable MW to indirect effects

of new physics by comparing our MSSM prediction with the SM case. Confronting the

MSSM prediction in different SUSY scenarios and the SM result as a function of the

Higgs-boson mass with the current experimental values of MW and mt, we find a slight

preference for non-zero SUSY contributions. As representative SUSY scenarios we have

studied various SPS benchmark points, where we have varied all mass parameters using a

common scalefactor. The MSSM prediction lies within the 1σ region of the experimental

MW value if the SUSY mass scale is relatively light, i.e. lower than about 600 GeV.

The prospective improvement in the experimental accuracy of MW at the next gener-

ation of colliders will further enhance the sensitivity to loop contributions of new physics.

We have found that even for a SUSY mass scale of several hundred GeV the loop contribu-

tion of supersymmetric particles to MW is still about 10 MeV, which may be probed in the

high-precision environment of the ILC. In SUSY scenarios with even higher mass scales,

however, it is unlikely that SUSY loop contributions to MW can be resolved with the cur-

rently foreseen future experimental accuracies. We have studied in this context the focus

point and the split-SUSY scenarios, which have recently received significant attention in

the literature. In the focus point scenario only at the lower edge of the allowed parameter

region in the m1/2–m0 plane a sizeable contribution to MW can be achieved. For higher

values, as well as for the split-SUSY scenario, we find that the SUSY loop effects are in

general very small, so that it is not possible to bring the prediction for MW significantly

closer to the current experimental central value as compared to the SM case.

Finally we have analysed the theoretical uncertainties in the MW prediction that arise

from the incomplete inclusion of the complex phases at the two-loop level. We estimate that

this uncertainty can amount up to roughly 3 MeV in the prediction for MW , depending on

the SUSY mass scale. Combined with the estimate of the possible effects of other unknown

higher-order corrections we find that the total uncertainty from unknown higher-order
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contributions is currently about 10 MeV for small SUSY mass scales.
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